ICT teacher handbook/Print version

From Open Educational Resources
Revision as of 11:37, 15 October 2016 by Yogi (talk | contribs)
Jump to navigation Jump to search
Book.jpg


ICT teacher handbook

The current, editable version of this book is available at
https://teacher-network.in/OER/index.php/ICT_teacher_handbook

Permission is granted to copy, distribute, and/or modify this document under the terms of the Creative Commons Attribution 4.0 International License.


Table of contents

Educational applications for teachers

Preface

Technology for Teacher Professional Development

  1. ICT and Society
  2. ICT in Education
  3. Basic digital literacy
  4. ICT for connecting and learning
    1. What is internet and web
    2. Professional learning communities
    3. Building a personal digital library
  5. ICT for generic resource creation
  6. ICT for subject specific resource creation
  7. ICT in teaching learning
    1. Digital story telling
    2. Technological Pedagogical Content Knowledge TPACK
  8. Explore an application

Transaction Notes for the ICT Student Textbook

  1. Approach to the ICT Student Textbook
  2. School level implementation guidelines
  3. What is the nature of ICT
  4. Data representation and processing
  5. Communication with graphics
  6. Audio visual communication
  7. Educational Software applications
    1. Building vocabulary with Kanagram
    2. Learning maths with Geogebra
    3. Your desktop atlas with KGeography
    4. The globe on your table with Marble
    5. Learning science with simulations
  8. Concluding Remarks
  9. References


Preface

ICT teacher handbook
Preface Technology for teacher professional development

Information Communication Technologies (ICTs) are as old as humanity itself; yet, digital technologies have brought in major changes in the creating, processing, organizing and presentation of information, as well as in communication. Since information and communication are basic social processes, all ICTs bring significant changes not only to education and knowledge processes, but also to larger socio-cultural, political and economic structures and processes. The ease of creating and sharing information using digital technologies has caused an explosion of information in society, creating what is termed as an “information society”.

Development of digital literacy skills is required for all to navigate this ‘information society’. Teachers, student teachers and teacher educators need to be able to use ICTs for their professional development, through self learning, peer learning, in digital resources creation and in teaching-learning. They must develop a critical understanding of the larger positive and negative implications of the design and adoption of ICTs in society. Recent curricular (NCFTE, National ICT Curriculum) and policy (National ICT Policy in School Education) documents on education in India have recognized the importance of integrating ICT in school education. We also believe that an effective ICT implementation can strengthen the school system such that the vision of 'universal education of equitable quality’ set out by the Indian Right to Education Act is realised.

Recognising the transformatory nature of ICT in education, the state education department is aiming to integrate technology into teaching and learning in sustained and meaningful ways. The ICT implementation in school education is based on the four pillars of infrastructure, training, content and connectivity. The focus is on having a digital lab and a digital classroom in all schools. It is envisaged that ICT is not to be seen as an end by itself, but rather as a process for creating a rich learning environment in the school. The digital classroom would be a regular classroom enriched with digital content; the teacher will be empowered to transact in this classroom. In line with National ICT Policy, the state intends to use open educational resources and free and open source software to allow rich possibilities for creating, sharing, communicating and learning. The department has also undertaken the training of teachers in technology integration to build in house capabilities in the education system, the schools and teachers to manage an effective ICT program integrated with school processes.

It is in this context that the Telangana Department of School Education has developed an ICT student text book and teacher hand book which will be used by the school teachers for transacting the ICT classes from Class 6-10. These have been based on the National ICT curriculum developed by NCERT, which seeks to bring to school education the possibilities of ICTs for connecting and learning, and creating and learning. The development of the ICT text book and the teacher hand book is in collaboration with IT for Change, a NGO working in the area of ICT and social change, and the Commonwealth Educational Media Centre for Asia (CEMCA), an inter-governmental organization, of the Commonwealth countries.

Scope of the handbook

This teacher handbook is meant as an accompanying resource for teachers to help in the facilitation of the student ICT syllabus and provide meaningful linkages to curricular and co-­curricular areas. The handbook also has a component of Teacher Professional Development which will introduce the pedagogical framework for technology learning, the implications of technology and society and possibilities for advanced learning in digital methods and processes. The handbook also provides the guidelines for school level implementation.

It is hoped that the textbook and handbook will help support the teachers in meaningful technology integration in the direction of achieving digital classrooms as well as in their own journey of becoming self-reflective professionals.


Introduction

ICT teacher handbook
Preface Introduction Technology for teacher professional development

Overview

ICT have impacted education in terms of change in the processes of learning and even physical spaces of learning. Availability of a global digital library has meant that the focus of education now needs to move from content acquisition to analyzing and meaning making of content as well as use the information for decision making. The availability of new format of content representation also means that new forms of knowledge can be explored and understood. This means, of course, that new skills have to be developed - both in terms of skills in interacting with the ICT environment as well as in terms of cognitive skills like analyzing, meaning making and representing the information available. The rapid growth and dissemination of information means that we now live in a world which is organized very differently and the implications of ICT and societal processes and institutions also needs to be understood.

Approach and intent of the NCERT ICT curriculum

  1. The NCERT ICT curriculum has been based on the aspirations and guidelines set in the National ICT Policy which focuses on building the skills of computing, creating and collaborating through safe, ethical, legal means of using ICT.
  2. Ability to handle ICT environment, creating original content, sharing and learning and focusing on educational and learning processes are the key principles of this curriculum, rather than focus merely on learning specific applications.
  3. The curriculum has been designed keeping in mind the various possibilities of creative expression possible through ICT applications and platforms available today and also seeks to build a mindset that will explore and such applications on an ongoing basis.
  4. The curriculum does not take a conventional approach to building digital literacy on specific applications but rather emphasizes a thematic, project based approach to ICT learning. Such an approach will also enable integration of ICT with multiple school subjects. This is why no specific software applications are focused on in the teaching, instead, the pedagogical processes that are sought to be learnt are discussed. For instance, instead of explaining how to use LibreOffice Writer (a text editor), the focus is on 'text editing'. Similarly the discussion is on creating image resources, audio resources, video resources instead of learning to use a GIMP or Audacity or OpenShot software applications and combining these resources for creating, editing and publishing learning materials.

The themes of The National ICT curriculum

  1. Connecting with the world: Technology is providing new ways for us to access information and learn. Along with this, evaluating information and using it appropriately become skills to be developed. This theme will focus on accessing the internet, evaluating resources available and creating meaningful personal digital libraries for self learning.
  2. Connecting with each other: A related dimension of connecting through ICT is in possibilities for learning in communities from each other. The focus of this theme will be on how to interact and learn in peer learning settings and through online, virtual forums. Collaborating an learning is a key learning expectation from this curriculum.
  3. Interacting with ICT: Building skills and aptitudes in a technology environment is an important expectation of this curriculum. The theme will focus on building a more proactive approach to engaging with technology, evaluating appropriate technology choices, maintaining ICT infrastructure and becoming critical users of technology, being aware of the social and economic implications of technology.
  4. Creating with ICT: This is a theme that focuses on building computing and creating skills in students and teachers using various ICT applications. These include data analysis and processing, creating graphics, creating audio visual communications, working with mapping applications, creating resources with specific school subject related applications and programming.
  5. Possibilities in education: ICTs have changed how we learn, the processes of learning and even places for learning. Numerous applications have also been developed for subject learning. Along with this, it has become necessary to develop a critical perspective on technology in education, an understanding of how technology will alter learning processes, making appropriate choices of technology, media and content and evaluation of technology for various learning processes.
  6. Bridging digital divides: Technology holds a lot of promise for development. Technology can also lead to exclusions and marginalizations. Understanding the social, economic and political impacts of technology as well as an understanding the various possibilities of platforms can help in making sure technology can be used for equitable opportunities. Another area of focus in the curriculum is in the use of technology for exploring inclusive education possibilities.

Teacher and Student curriculum

  1. The teacher curriculum is expected to be completed over a 2 year time frame, resulting in a certification. While the 2 year time frame is for a comprehensive program, the curriculum has been designed in a modular manner to allow for need based learning. This can be structured as a course in both pre-service and in-service training, and specific subjects can be differentiated.
  2. In the student curriculum, the focus is on bringing digital literacy for students as well as introducing the digital methods as a method of subject learning. Themes 1-4 will be a part of the student curriculum. The digital literacy will focus on building computing and creating skills and not merely office applications. Logical,this has been developed as a 3 year curriculum (from Classes 6-10) though individual states can structure it based on their requirements and constraints. The expectation is that this can be tested as a core subject area at the end of Class 10.

Approach of the student textbook and teacher handbook

Philosophy of the book

The National ICT Policy articulated the vision for ICT in Education in terms building the skills of computing, creating and collaborating through safe, ethical, legal means of using ICT. The NCERT ICT curriculum has been designed keeping in mind the various possibilities of creative expression possible through ICT applications and platforms available today and also seeks to build a mindset that will explore and such applications on an ongoing basis. Such an exploration requires a technology environment that is free and open; this has been recommended both in the ICT Policy and NCERT curriculum. The textbook has therefore introduced different digital processes predominantly through free and open source applications.

Curricular basis

  1. The textbook has been designed based on the NCERT ICT curriculum – focusing on creating original content, sharing and learning and on educational and learning processes
  2. Ability to handle an ICT environment for the above outcomes, rather than learn specific applications is the focus of this textbook
  3. In line with the National ICT curriculum, the following dimensions of ICT knowledge have been taken up in this book
    1. Interacting with the ICT environment, including the internet and an understanding of the nature of ICT
    2. Data processing and representation
    3. Communication with graphics
    4. Audio visual communication
    5. Working with different software applications

Each of these is organized as a chapter with graded objectives and activities in 3 levels to address the different levels of Class 6-8. The activities will be structured as small projects which will allow for an exploration of some topic/ issue is one/ more subject areas.

  1. The 3-level curriculum has been split across two books – Book 1 (for class 6-8) and Book 2 (for class 9-10). Within Book 1, there are three levels proposed – based on the extent of digital skills anticipated and the academic levels expected
  2. The focus is on learning skills of computing and developing competencies to interact with ICT, as envisaged in the National ICT Policy. Therefore, a wide variety of applications has been introduced. The choice of applications – both generic and subject specific – has been made in such a way as to introduce students to the possibilities of creating and learning with ICT.
  3. Book 1 will has a student textbook and this is the accompanying teacher handbook. The teacher handbook will have two components - a component for Teacher Professional Development as well as a component to support the transaction of the student textbook.

Pedagogic approach

  1. ICT allow for integrated multi-disciplinary learning methods to be developed. To explore and for enabling a holistic approach to learning, the textbook for the students has taken a project based approach. A project based approach offers several advantages in terms of student engagement, exploration, self-learning, peer learning, expression and self evaluation. By using ICT to explore an issue or a theme, students will be encouraged to make connections with different school subjects.
  2. The textbook has been developed based on the Technological Pedagogical Content Knowledge (TPACK) framework where technology is not introduced as a stand-alone, tool-based method but integrated within core academic processes relevant to school learning. Hence the activities have been described in terms of processes of learning rather than steps of using an application.
  3. An important emphasis in the textbook is on the possibilities of creation using ICT. Hence the book has been written as a set of activities that invoke several learning processes and integrating ICT meaningfully into the processes, allowing multiple possibilities for student creation. Steps of working with various tools and applications has been left as incidental learning.
  4. Collaborating and learning is another important aspect of ICT. The activities in the textbook have been designed so as to allow for group work and adequate opportunities for peer learning. It is intended that different activities be taken up by different student groups to allow for a wide variety of creations; thus allowing for learning and sharing.
  5. It is intended that the activities be done in a cumulative manner, across different themes of the curriculum as well as across levels. It is possible to assess formatively the process of working through the projects with various digital methods and tools as well as evaluate the finished product, which will be in the form of a digital portfolio.
  6. All activities need not be completed by all teachers. The teacher can assess the learning contexts, needs and transact the activities that will be most effective. Teacher is encouraged to introduce variations into the activities that may make them more useful for student learning.

Learning expectations

The learning expectations are two-fold, for students and for the teachers. It is expected that at the end of the completion of the ICT syllabus, the students would be able to reach the levels of competencies articulated in the National ICT Policy. The key expectations from the curriculum are listed below:

  1. Able to interact with various ICT devices and applications and handle ICT equipment safely
  2. Able to use ICT for understanding information, analyzing and meaning making
  3. Able to use ICT for creating and expressing in various forms - textual, graphical and audio visual
  4. Able to use ICT for self learning through use of multiple ICT applications in various subject areas
  5. Able to collaborate with one another and create and share work, as well as publish through web based methods
  6. Understand the implications of ICT on society and adopt safe, ethical and legal practices of ICT use

In addition to these, the expectation from this curriculum is that teachers become a self-aware group of professionals who are able to collaborate and learn and adopt new pedagogical processes for facilitating a constructivist classroom using ICT.


Technology for teacher professional development

ICT teacher handbook
Preface Technology for Teacher Professional Development ICT and society

File:Teacher Handbook Technology for Teacher Professional Development.mm

The integration of ICT for teacher professional development (TPD) is discussed in the hand book along the following areas:

  1. ICT and Society
  2. ICT in Education
  3. ICT for connecting and learning
  4. ICT for creating
  5. ICT in teaching learning
  6. Basic Digital Literacy

Download Technology for Teacher Professional Development mindmap.

Reading material for teachers

  1. Technological pedagogical content knowledge framework
  2. Pedagogical content knowledge
  3. Teacher Education resource portal


ICT and society

ICT teacher handbook
Technology for teacher professional development ICT and society ICT in Education

ICT and Society

ICT refer to the infrastructure and processes connected to creating information, organizing, processing and representation of the information, as well as communication of the information. ICT have impacted the functioning of existing institutions in government, private sector, media and civil society.

Understanding ICT - a brief history

Information as well as the communication have been one of the defining characteristics of the human society. Historically, many societies and cultures have used different and multiple ways of organizing, representation and transmission of information. These differences exist in the manner of recording, the content recorded, ways of access and the scope of the transmission. Improved and easy access to information and knowledge significantly enhances people's overall life opportunities and has the potential to alter structures in society. Historically, difference in access and use of information by various sections of the society has led to marginalization and inequity.
ICT are perhaps nearly as old as humanity itself, as human beings needed to communicate with one another, beginning with symbolic (non verbal) ways, before language was invented. Language could be seen as the first 'ICT', it enabled (oral) communication among human beings. Yet oral communication had the limitation of space and time, meaning that the speaker and the listener had to be in the same space and time.
Script was the next ICT, invented around 5,000 years ago, which enabled information to be held distinct from the communicator and be made available beyond the limitation of space and time that oral communication imposed. Writing also enabled easier recording of human history and thus the invention of script was a landmark in the history of ICTs.

Invention of printing technologies scaled up the 'writing' process and enabled mass production of books. The invention of radio and television created the 'mass media' in which simultaneously the same message could be transmitted to thousands of people. Each ICT invention enabled the processes of information creation, sharing, storing and communicating to be easier, quicker, more efficient (reaching more people) etc. Each invention was a significant event in the evolution of human communication processes and in the explosion in the availability of information. Each step also resulted also in shifts in the way information became accessible to sections of society.

The digital paradigm

Information and communication have historically been drivers of social processes and systems. What makes the new framework different is the advancement in the digital technologies surrounding information and communications. We are now perhaps in the middle of the next epochal movement in the history of ICT, the use of digital methods of accessing, creating, modifying sharing and storing information as well as for communication.
The digital format of resources has caused such an explosion of information since creation, storage and dissemination of information has become much easier and cheaper than before. Increasingly, production and consumption of information becoming increasingly important, not only from economic but even more so from social and cultural perspectives. This digital knowledge society is developing new structures and adjusting existing structures, along the lines of information flow. These pathways of information flow can also create more marginalization and exclusion if all the participants in society are not equipped with the skills to function in this society.
Another key aspect of ICT lies in the possibilities of connecting and their impact on communities and organization. By their very nature, ICT allow new possibilities for network structures of organizing and communicating information.

Movement of ICT

Knowledge model / Basis Method Storage Sharing Publishing (mass sharing) Features
Oral / Language Oral Human memory; Speaking - Hearing Not possible Requires synchronicity of space and time
Written / Script Text Books Physical Not possible Share knowledge across space and time, but in limited manner
Print / Printing Text Books Physical Books Explosion
Mass Media/ Radio, TV Analogue -Audio, video Cassettes and similar analog devices Physical Over broadcast media Mass reach across space and time
Digital (ICT) Digital methods (text / audio / video editors) Digital storage like hard disks Email Websites, blogs, Wikis – 'desktop publishing' Information spreads fast and wide. Much easier construction and much Wider possibilities – text, audio, video

Like the ICTs invented earlier, the invention and mass use of digital ICTs is having significant implications for society across various spheres of polity, economy, governance, media etc. We will explore these implications briefly in the next section.

ICT and implications for polity, society and economy

Political

The political processes in most countries have been impacted by digital ICT. Many political leaders now participate on virtual platforms that allow them to communicate with people directly, e.g. Twitter which is a 'micro blogging' platform, is used by many political leaders, as well as government departments to communicate its work and information. Mass movements have also used digital networking tools to collaborate and support action. It is said that during the recent Egypt struggle for democracy, protests were coordinated using social networking platforms/tools, which made them more effective. The counting of votes has now become a fraction of time, used earlier, through 'electronic voting machines' and in a large country like India with a large voter base, counting for an entire constituency can be completed in a matter of hours.

Think and talk it over with your students

The use of Internet by people mobilising in Egypt during the 'Arab spring' is discussed in detail in 'Internet Activism and the Egyptian uprisings : transforming on-line activism into the off-line world' by Tim Eaton, see article. Read this article and discuss the concept of 'mediated mobilisation'. Can a variation of such a strategy be used for instance by women, to protest against illicit liquor shops in villages? Can you create a group of your colleagues in your Mandal, using a tool like 'Whatsapp' to discuss ways of raising awareness against domestic violence or eve teasing?

The listed article was sourced using 'Google Scholar' a search engine that provides links to scholarly / academic articles. Can you search Google Scholar for articles of interest to you.
Digital technologies also allow unauthorised access (even spying). Emails and documents can be 'hacked' and accessed. A large part of our ICT infrastructure is privately owned, and the companies which often provide it 'free' (of cost) to users, may be using the information users feed, to monetise the same (sell the information) as well as share it with others. The sharing of such information both authorised by us (when we agree to the 'terms of use' of the software/tool), as well unauthorised, can be for the commercial gains of the company (they can sell or hire this information to advertisers for example), or for political purposes (to enable governments or other agencies to spy on us). ICTs make such tapping much simpler and easier, since the data passing over the global networks can be easily 'hacked' and a copy of the information shared with the people conducting such espionage.

Thus the digital nature of ICT can be both greatly beneficial as well as greatly harmful for furthering human rights and development. Hence a critical perspective is essential, and as teachers we need to be cautious against the hype that surrounds ICT, as a panacea for all problems, and instead keep a balanced and critical perspective and use our judgement to decide when and how to use digital technologies and when and how not to.

Socio-cultural

Since communication is the essence of social processes, the introduction of ICT has dramatically impacted most of our socio-cultural activities and processes. With the mass use of the cell phone, we now assume that we can reach anyone any time. This kind of access enables us to plan interactions / activities in much more efficient ways. Even twenty years back, the best of possible communication situations, one was not sure, if one could reach another person using a land-line / fixed line phone. In the absence of email, sending a letter over postal services meant a gap of many days before communication could be established. The reduction in communication time, has opened up numerous more possibilities for each of us (who are part of this digital world).

Social networking platforms are connecting millions of people to create 'virtual communities' or groups. Such interactions with large number of people who may not be physically close to one another, opens new possibilities for friendships and learning. Of course, we also hear several anecdotes of how people can be naively trusting of 'friends' on such networks and get exploited or fooled. It is extremely necessary to exercise diligence and caution in making friends on such platforms. We also need to guide our students on safe and careful use of social media platforms.
The mass sharing of information through the digital networks is also perhaps speeding up the assimilation of dominant cultures, which began with the advent of mass media. Wherever one travels, we can see the popular brands and symbols and the shopping malls across cities look familiar with the similar brands available on sale.

There is research to suggest that this process is negatively affecting local contexts and cultures. UNESCO study has documented the decline of local cultures and languages and that many languages have become extinct and many dying. As teachers, your role would be to promote digital avenues for storing and sharing local cultures as well. For instance, the Wikipedia encyclopedia has more than 5 million articles in English but less than 1% of that is available in the Telugu Wikipedia. Documenting local cultures, resources, literature and sharing it in digital formats on public digital platforms, such as Telugu Wikipedia is an important priority for our society, one in which teachers would need to have an important role.

Think and talk it over with your students

BBC study

  1. In 2000, 75% of stored information in the world in analogue format such as video cassettes, but by 2007, 94% of it was digital"
  2. Email has become the primary communication tool for a significant number of people
    1. 1.88 billion – The number of email users worldwide.
    2. 294 billion – Average number of email messages per day (42 emails for every human being).
  3. 255 million – The number of websites as of December 2010.
    1. 21.4 million – Added websites in 2010.
  4. Amazon, the worlds largest book seller sells more e-books than books

Economic

For several centuries, society was agrarian, meaning most people worked in agriculture, food (and related items) production was the most significant part of the gross domestic product (GDP). With the industrial revolution in the 18th century, industry / manufacturing sector became very important and its contribution to a nations GDP crossed that of agriculture.

Think and talk it over with your students

Society is changing, moving from an Agricultural society → Industrial society → Knowledge society. The table below lists highlights relating to the processes of production.

Kind of society Basic production Basic material Share in India GDP of basic product in 1950 (2010)
Agricultural society Food Land 70.00% (15.00%)
Industrial society Goods Capital 20.00% (28.00%)
Knowledge society Services / knowledge Knowledge / Information 10.00% (57.00%)

ICT have affected the nature/shape of many industries and occupations. Typewriters, "film" based cameras have become extinct. Information based 'service' industries such as newspapers, travel and tourism, financial services, insurance, have been significantly impacted. Many new 'digital' occupations have also begun, such as software engineering, digital photography, system administration, desktop publishing etc.

The possibilities of establishing information networks which can facilitate rapid communications and decision making has led to the creation of very large transnational corporations. They are able to support de-centralised working, yet retain overall control through by better ICT based 'Management Information Systems. Such networks are also on the other hand, supporting decentralised production and collaborative production projects, such as Free and Open Source Software or Wikipedia.

Governance

Democratic Governments have in the past had difficulties in sharing information transparently with citizens and also supporting citizen/ community participation in their activities. This is partly been to the large volumes of information being generated and stored across thousands of paper files which has made sharing difficult if not impossible. Slow modes of communication also lead to delayed communication with the public. However, increasingly, governments are using ICT to improve information processing and sharing, leading to greater transparency. India has passed the Right to Information Act, 2005 and the use of 'pro-active' disclosure through the Internet is seen as a very important way of meeting RTI needs. Apart from information transparency, transaction processing too has been simplified in many areas. Booking of travel tickets has become simple, and in case of education, admission, examination administration etc. has also become quicker and more efficient.


ICT_in_Education

ICT teacher handbook
ICT and society ICT in Education Basic digital literacy

Students must develop ICT competencies and skills through their school years, to fully participate in the knowledge society. If the students must develop ICT skills, it goes without saying that the teachers must be equipped to facilitate them to acquire these skills. The scope for ICT in Education has three broad strands – in the school and the teaching-learning process, in teacher-education and in strengthening the administrative and academic support structures.

Principles for ICT in education

Digital Natives

While considering ICT in Education, we need to consider that the generation of children entering schools are digital natives. They are born into an age where rapid changes are taking place in digital technologies, and learning to navigate the digital world is an essential skill. An important point to keep in mind here, however, is that these conditions of nativity are not uniform. Socio-economic disparities are mirrored in disparity of access to the digital world and many socio-economically deprived children are deprived of this aspect of education too. It is also important that teachers acquire and internalise technological and pedagogical skills to the extent that they can facilitate the classroom process while working with digital natives and non-natives.

ICT in Education as Public Resource

An important principle in public education, is that curricular resources and the tools for creating such resources need to be publicly owned, so that they are freely available to teacher educators, teachers and students without restrictions. In the same manner, digital tools and resources used in public education, should be publicly owned. Use of free and digital tools/resources can provide a rich and diverse public digital environment. Digital resources are non-rivalrous (meaning that sharing does not reduce availability) and hence promoting public creation and sharing of digital resources (both e-content and software) is an important step to ensure systemic benefit from ICT in education. The National Policy on ICT in school education therefore recommends the use of free and open source software applications. Use of proprietary products can create vendor 'lock-in' which could be detrimental to education.
A free and open source operating system such as GNU/Linux is widely used. This can save public funds on license fees on procuring proprietary software and upgrade fees at later dates. There are a large number of freely shareable educational tools on GNU/Linux, pertaining to mathematics, science, social sciences etc which can be used in schools. There are large number of additional freely shareable tools , such as IBUS which supports word processing in more than 50 languages, including most languages used in India or the ORCA screen reader necessary for the visually handicapped or Scribus for desktop publishing. All these tools can be pre-installed in a 'custom distribution' of GNU/Linux for a one-time installation. A custom distribution of the Ubuntu GNU/Linux system will be provided to all the schools for implementing the program. This software distribution will have all the software applications that are part of the text book and hand book. Since all applications are free and open source, they can be periodically upgraded without license fee implications. The department may provide an updated version of software distribution annually, so that the schools can upgrade their ICT Labs and use the latest versions of the different software applications.

Integration of ICT in Education

ICT in school education

There are three ways in which ICT can be introduced in schools– Digital literacy, instruction in ICT-related subjects such as desktop publishing or video editing, and use of ICT to as a tool to teach various subjects as a regular part classroom processes.

ICT in teacher education

There are three components to use of ICT for teacher education - Digital literacy, creating and sharing digital resources, and networking for peer learning and sharing.

Open Distance learning is also being changed by integrating ICT, to allow for greater interactions between the educators and learners and among the learners.

ICT in education administration

ICT can be used for planning and implementing training programmes through Training Management Systems. Information can also be easily shared within and across institutions to facilitate education administration, for instance circulars or orders can be shared over mail or phone based communities.

Open Educational Resources

The National Curriculum Framework 2005 speaks of contextual, inclusive and meaningful education. For these ideas to come true, relevant learning resources must be available for the students, teachers and teacher-educators. These resources must be contextual, easily available and allow for learners to modify and adapt for their requirements.

Currently, textbook may be the most important resource for many teachers. This resource is limited, made once in a year and perhaps represents one set of thoughts. The text based resource does not incorporate audio visual resources, and may not address multiple learning needs. External resources, though available, are also largely non-digital, expensive and cannot easily be adapted for local needs and contexts. For critical and diverse perspectives to develop, multiple resources must be made available and it must be possible for knowledge to be constructed and shared from multiple contexts. Otherwise, it is possible that only some forms of knowledge will remain important and other will die out. For knowledge sharing to freely happen, educational resources must become freely available, freely shareable and freely changeable to adapt to local contexts and needs. Open Educational Resources (OER), as they are called, are such learning resources. Open Educational Resources are digital resources that are available freely, in multiple formats - text, audio, video - to allow for multiple learner needs.

As per UNESCO, OER are "teaching, learning and research materials in any medium, digital or otherwise, that reside in the public domain or have been released under an open license that permits no-cost access, use, adaptation and redistribution by others with no or limited restrictions."
OER became a global phenomenon when Wikipedia was launched in 2001, this is an encyclopedia on the internet, where knowledge is created and shared by many people and not restricted to one person. Following this, Massachusetts Institute of Technology, a leading university in the United States of America, released many of its course materials for free called Open Courseware (2001). In teacher education, educational resources were developed collaboratively by a programme for Teacher Education in Sub Saharan Africa and published on-line. In India, National Programme on Technology Enhanced Learning (NPTEL) and IGNOU have offered many of their courses as OER.

Principles of OER

Open Educational Resources are resources that allow the following four kinds of freedoms to learners/ users. These “Freedoms” are as follows:

  1. Resources can be accessed for free and 're-used'
  2. Resources can be revised to make it relevant or more useful
  3. Resources can be re-mixed / combined to make a new resource
  4. Resources can be redistributed - the revised/ remixed resource can be shared back.

These are called the 4 Rs (re-use, re-vise, re-mix and re-distribute) of OER

Licensing and copyright

OER are shared under copyright which are less restrictive than the usual 'all rights reserved' and allow for some or all of the four R's. One popular copyright used for such resources is the “Creative Commons”. Creative Commons is a type of copy right (sometimes called Copy Left, to contrast it with the traditional 'all rights reserved' copyright) that will allow you to use the resources, modify them, combine them and also redistribute. When you are sharing a learning resource as OER, you can share it under Creative Commons License, by explicitly mentioning the license 'Copyright – Creative Commons' in your text. If nothing is mentioned, the default copyright is 'all rights reserved', which will mean others cannot modify or share your resources. The ICT hand book and text book are released as OER, which allows teachers, teacher educators and others to re-use, as well as revise and re-distribute.

OER - a national priority

At the national level, the NCERT is maintaining the National Repository of Open Educational Resources. The Telangana Education department has established its own repository called the Telangana Repository of Open Educational Resources. It is organized on the principles of OER and is built on a MediaWiki platform like Wikipedia. A similar repository has also been built in Karnataka where teachers have collaborated through the Subject Teacher Forum program of RMSA and DSERT Karnataka to create and publish resources.


Guiding principles for organizing a resource repository

ICT teacher handbook
ICT and education Guiding principles for organizing a resource repository Basic digital literacy


Basic digital literacy

ICT teacher handbook
ICT in Education Basic digital literacy ICT for connecting and learning

The ICT environment

Having an overview of ICT and their larger societal implications, we will now learn how to navigate / use ICT. Any technology has a skill component and ICT is something all of us can practise for our own use. In the next section we will learn how to use a computer and various software applications for our professional activities. You should diligently work on this practice component, and also try to integrate it into the other subjects you teach as well, to the extent you find this relevant and useful. The more you practise / use, the more you would learn and become comfortable. We will explore the basics of computer hardware and software and learn Internet browsing, concept mapping as well as text and number editing applications in this section. At all times, we will try to see how ICT are relevant to your primary mandate of teaching-learning. Hence we will approach the learning and use of these applications from a pedagogical perspective.

Computer Hardware and Software

A computer is a device which takes input, processes it and gives output which can be stored and shared. When you enter data into your computer, it is called as input. An input can be data like text or picture or an instruction on what to do with the data. This data is processed (process means to perform a series of operations on a set of data) and you will get the output. The software is what makes the computer and mobile so powerful. Learn more about the history of computers. A more detailed description of the computer can be found here.

Learning to input with keyboard

Most of the instructions / input is given to the computer through the keyboard, hence it is important that teachers should be able to type efficiently, using all their fingers. Typing using the correct finger for each key on the keyboard will help improve the speed of input enormously. It will enable the teacher to type without seeing the keyboard, and seeing the monitor during typing, will enable spotting of any mistakes immediately.

Earlier to learn typing, one had to go to a typing class, but now the computer has software that you can use to learn typing.

Brief information about the keyboard

The keys on the keyboard can be divided into several groups based on function:

  1. Typing (alphabets and numbers) keys: These keys are arranged as in a traditional 'QWERTY' typewriter
  2. Special purpose keys: These keys are used alone or in combination with other keys to perform certain actions, such as CTRL, ALT, ESC, Function keys etc.
  3. Navigation keys: These keys are used for moving around in documents / editing text. They include the arrow keys, HOME, END, PAGE UP, PAGE DOWN, DELETE and INSERT.
  4. Numeric keypad: The numeric keypad is handy for entering numbers quickly. The keys are grouped together in a block like a conventional calculator or adding machine. This block may not be available on all keyboards, numbers are also provided in the top rung of the keyboard

Learning to input with the mouse

Initially, the keyboard was the only device for providing instructions to the computer, but with the invention of the 'graphic user interface' (GUI in short), the mouse became an important input device. The mouse makes giving instructions much simpler by pointing the cursor to a place on the screen and clicking to select an instruction. You can become comfortable in using the mouse by practising with Tux Paint. Tux Paint features a simple interface and a fixed drawing area with access to previously made images using icons. Tux Paint is equipped with cartoon mascots which can encourage students to learn to use the mouse.

Operating System

We need a special computer program to explain our instructions to the computer, this is called the Operating system (also called system software). Every computer must have an operating system to run other computer programmes. Even your mobile phones have an operating system (such as Android). Operating systems start automatically when you turn on the computer, this process is termed booting. All the other computer programmes like programmes to paint, type, listen to music, learn maths etc., are called application software or 'Apps' which work with the system software. People who write programmes are called computer programmers or software developers. On any computer you will have software to paint, to type letters, to watch movies, to find something on the Internet, to learn maths.

You can become comfortable in using the Ubuntu GNU/Linux operating system through Learn Ubuntu.

The operating system is like the foundation of a building. By itself it may not seem to be very useful, but it is the basis for all other applications (other floors of the building, which are used by us)


ICT for connecting and learning

ICT teacher handbook
Basic digital literacy ICT for connecting and learning What is internet and web

One of the most powerful things about a computer is the ability to connect to another computer. The transfer of information through digital methods allows devices to be connected across time and space. It is not difficult to see the possibilities that this has for the way knowledge can be accessed and shared. The by-line of one IT company, Sun Micro-systems, was "The network is the computer". By connecting people to one another, ICT allow the sharing of knowledge with one another and allow collaborative work and creation.

The emergence of the internet and the web has changed the way we are accessing information. The internet is a network of thousands of computers, many of which 'serve' the network by providing data and services. Getting data about something is not so difficult any more. Emergence of email has changed the way we think of communication, on-line communities are emerging in various interest areas. All of these have a great impact on the way we learn. However, making meaning depends on our skills to evaluate and organize these resources. The resources available on the internet can be organized into a meaningful personal digital library on our own computer, thus enabling self learning. The web itself can be seen as a 'global digital library' which has resources on many topics. Resources are available on almost all topics that may be of interest to a teacher in the English language. However, teachers need and can contribute to on-line resources in local language, to increase the local language resources on the web.


What is internet and web

ICT teacher handbook
ICT for connecting and learning What is internet and web Professional learning communities

Internet

If you want information about your bank balance, you can connect to your bank's computer from home and get the information that you want. There are many such computers in different organisations giving us different types of information. These computers are connected to one another, their network is called the internet. The internet is thus a physical network of millions of computers across the world, each of which has a unique identifier. Some of these computers act as 'servers', they store data which can be accessed by other computers. The millions of computers which are part of the Internet, is like a huge library with information on almost any issue. Apart from information, many of these computers also have applications or web tools, such as search engine, maps, translation, which have different purposes. The 'web-sites' we visit are nothing but folders of computers connected to the internet.

These computers communicate or share data with one another using the protocol called the TCP-IP, (transmission control protocol / internet protocol). As the name suggests, TCP/IP is the combination of TCP and IP protocols working together. Under TCP/IP each file being transported across the Internet is broken into smaller parts called "packets" by the server. Each packet is assigned an IP (Internet protocol) address of the computer it has to travel to. As the packet moves through the global network it is "switched" by a number of servers toward its destination, the requesting computer or "client" computer. These packets do not usually travel together on the Internet. Packets from the same file may travel via different paths through different servers, but toward the same destination. This “splitting into packets” technology allows us to use Internet most efficiently. It means parts of a file can be shared across a number of phone lines instead of having to find one phone line to put a large file into. It is also hard to break the network, as the data will be routed around the trouble spot. In this respect TCP/IP can be likened to a group of cars which need to go to the same destination, but instead of all of them going on one road (which may be busy), each car can select a different road out of thousands of roads available. By picking the roads with least traffic, all cars can reach the destination in overall least time. The power of the internet to rapidly move information from any computer to any computer is because of the TCP/IP protocol.

The TCP/IP protocol was invented by Vincent Van Cerf, Robert Kahn and Louis Pouzin.

World Wide Web

World wide web (www) is an application on the Internet, which was invented by Tim Berners Lee. The www allows computers to access the Internet in the form of a web page, using an application called the web browser. There are millions of pages of shared information on the computers in the network, created by many people and organizations, in the form of 'web pages' accessed using a software application called a 'web browser'.

This information network, called the World Wide Web, consists of web sites. A web site is a collection of related web pages. Web pages are identified by means of a URL (uniform resource locater), which is treated as the website address, usually beginning with “http://” (HTTP stands for hypertext transfer protocol, which is the method used for transferring web page information from the server to your computer. We connect to the Internet using a web browser and the browser opens one web page. This web page has links to other web sites / web pages which we can visit by clicking on the links. Each of the subsequent pages will also have many links which we can click on. Thus we can visualise the world wide web as a huge mansion with many rooms, each room having many doors. When we enter a room (open a web page), we can access the resources in that room. We can also go from that room to other rooms through the several doors that this room has (go from one web page to another web page by clicking on any of the links on the page we are in). The new room also would have many doors. Thus we can go through the mansion from room to room (web page to web page) through the door (web link) in each room. Thus though the entire web is very huge, we only access it one page at a time. We can connect to the web and go from web page to web page using a software called the web browser. Web browsers allow a user to quickly and easily get information provided on many web pages at many websites.

Initially the access to the www was only for downloading, this was called Web 1.0. Subsequently the second generation of www was evolved, called Web 2.0. , where ordinary users can create their own materials and publish on the Internet, using software tools like blog or wiki. A blog is like a e-journal and teachers can create their own e-journals for reflective practice using software tools such such as WordPress.

We have moved further along now to collaborative creation of web pages, through online collaboration platforms. Now more and more processing can be done on the Internet, where the data, results and analysis is stored the Internet and we can operate/ add/ access through various web based applications. This is called Cloud Computing.

Internet Safety

With the increasing importance of internet in today's society, teachers need to be aware of the safety concerns around using the internet and different applications on the web. Keeping private information private, secure access to the internet and understanding the rules and ethics of different online applications for communicating, including social media is critical for teachers. Teachers also need to interpret this for students and train them on methods of internet safety. More details on how to access the internet safely are available in the section on ICT textbook transaction notes.


Professional learning communities

ICT teacher handbook
What is internet and web Professional learning communities Building a personal digital library

Every profession has its own professional association for learning and sharing. These associations are a method of continuous interactions with fellow practitioners (peers) and allow methods of learning beyond the college or university. You may have learnt about social constructivism and how we learn from each other. Teachers, as professionals too need to connect regularly to their peers, for sharing their experiences, practices as well as insights. They also need to be able to contact peers as well as mentors for seeking support.
However, in the large school system in India, teachers may be isolated in their practice and they may have few opportunities for sharing experiences, reflecting and sharing understanding or seeking solutions for their specific needs and challenges. In the traditional in-service teacher training programmes, the learning is usually at a point in time; teachers learn in workshops, and there is limited opportunity for interactions after that. Teachers may not have formal, organized methods of being in touch with their faculty or with one another to extend the learning after the teacher workshop. There is a need for teachers to organise themselves into learning communities for regular interactions to support peer learning and mentoring.
While professional communities and associations have been there for a long time, ICT have made possible ways of connecting and communicating with each other simpler and more accessible. Online communities are often a good way of continuing interactions beyond the restrictions of meetings of physical time and space. Online communities can be mailing forums or discussion groups and can be accessed either through your phone or the computer. The National Curriculum Framework for Teacher Education (NCF-TE, 2010) talks envisions teacher education with the following key components: (i) collaborative networks for learning and sharing, (ii) continuous learning (iii) different paths and spaces for learning. It regards peer learning as an important component of Teacher Professional Development.
Mailing forums are a good way to keep the teacher community in contact with one another and serve as a complement to physical interactions, and provide for learning beyond the workshops. Teachers can use the mailing forums to share their experiences, share resources created by them (including question papers, share activities and ideas for CCE), ask for clarifications, seek feedback, discuss issues in school administration as well.
Professional Learning Communities are a recent method for continuing professional development and by providing teachers with peer support, it can be a sustainable method of development. A state-wide mailing-list can bring all teachers (usually teaching the same subject) together, to discuss and share. PLCs can be created at different levels for different purposes. You should also try to form such a community in your school, with your colleagues, your 'school professional learning community' which will have school development as an important aim. You can also initiate a PLC with your colleague subject teachers in your Mandal or district.