L2 Introducing 10,000

We know that there is no 2-digit number beyond 99. 99 is the greatest 2-digit number. Similarly 999 is the greatest 3-digit number, and 9999 is the greatest 4-digit number.

Observe the following pattern:

$$
\begin{aligned}
& 9+1=10=10 \times 1 \\
& 99+1=100=10 \times 10 \\
& 999+1=1000=10 \times 100
\end{aligned}
$$

We observe that
Greatest 1-digit number $+1=$ Smallest 2-digit number
Greatest 2-digit number $+1=$ Smallest 3-digit number
Greatest 3-digit number $+1=$ Smallest 4-digit number
Following the pattern, we can expect that, on adding 1 to the greatest 4-digit number (9999 - nine thousand nine hundred and ninety nine) we get the smallest 5 -digit number (9999 + $1=10,000$ or ten thousand). Further we can expect that $10 \times 1000=10,000$ i.e. $9999+1=10,000=10 \times 1000$.

2.1 Expanding and reading 5-digit numbers

You know how to expand a 4-digit number like 2345
$2345=2 \times 1000+3 \times 100+4 \times 10+5$ and we read this as Two thousand three hundred and forty five.
$9999=9 \times 1000+9 \times 100+9 \times 10+9$ and we read this as Nine thousand nine hundred and ninety nine.

The first 5 -digit number is $10,000=1 \times 10,000$ and we read this as Ten thousand.
We can use the same principle to expand any 5-digit number and read it too. So let us expand and read one of the numbers we used in the earlier lesson.
$26,751=2 \times 10,000+6 \times 1000+7 \times 100+5 \times 10+1$ and we read this as Twenty six thousand seven hundred and fifty one.
2.1.1 Write the expanded form and the 'reading' form or number name for the following:
a. 65,740
b. 89,234
c. 20,085
d: 57,306
e. 12,345

End of L2

